Problem Sheet #1

I've got 99 problems and now Jay-Z is one

Barack Obama White House Correspondents' Dinner April 27, 2013

Problems are roughly sorted in order of difficulty. Problems marked with asterisks are meant to be challenging.

- 1. What are the solutions to the equation $x^2 12x + 35 = 0$?
- 2. Find the area of the solution set to the equation $x^2 + x + y^2 y + \frac{1}{4} = 0$.
- 3. How many two-digit positive integers are divisible by 4 or 7, but not both?
- 4. What is the solution to the equation $\ln x = \log_{\ln x} x$?
- 5. Equilateral triangle ABC is inside square ADEF, such that B lies on side DE and C lies on side EF, as shown in Figure 1. Find [ABC]/[ADEF].
- 6. Find the last digit of 2^{2020} .
- 7. How many distinct triangles can be made using sides with distinct side lengths from the set $\{1, 2, 3, \ldots, 12\}$?
- 8. Find the area of $\triangle HXY$, where ABCD is a square, AH = GC = CF = EA = 1, and HD = DG = FB = BE = 2, as shown in Figure 2.

- 9. (2018 AMC 8) How many perfect cubes lie between $2^8 + 1$ and $2^{18} + 1$, inclusive?
- 10. Let A, B, C, D, and E be digits such that the four-digit number ABC6 is equal to 11 times the two-digit number DE. Find the five-digit number ABCDE.

- 11. 18! is equal to 6, 402, 373, 705, 7ab, 000. Find the product $a \cdot b$.
- 12. Find the remainder when 2020^{19} is divided by 7.
- 13. Each face of a cube is painted either red or blue. Find the number of ways to paint the cube, if two paintings that can be obtained through a rotation are considered identical.
- 14. Define the base-2 *iterated logarithm* of x to be

$$\log_2^* x = \begin{cases} 0 & \text{if } x \le 1, \\ 1 + \log_2^* (\log_2 x) & \text{if } x > 1. \end{cases}$$

Find the smallest integer n such that $\log_2^* n = 5$.

- 15. Find all roots to $x^4 2x^3 7x^2 + 8x + 12$.
- 16. * (2014 AIME II) Let $f(x) = (x^2 + 3x + 2)^{\cos(\pi x)}$. Find the sum of all positive integers *n* for which

$$\left|\sum_{k=1}^n \log_{10} f(k)\right| = 1.$$

- 17. $* \triangle ABC$ has side lengths AC = 3, AB = 4, and BC = 5, and has incenter D. Circles Γ_1 , Γ_2 , and Γ_3 are drawn inside triangle ABC such that all three circles pass through D, Γ_1 is tangent to AB and AC, Γ_2 is tangent to AB and BC, and Γ_3 is tangent to AC and BC, as shown in Figure 3. Find the sum of the areas of circles Γ_1 , Γ_2 and Γ_3 .
- 18. * The expression $\sqrt[3]{25 + \sqrt{a}} + \sqrt[3]{25 \sqrt{a}}$ is exactly equal to 5. What is the value of a?
- 19. * Find the remainder when 2020^{2019} is divided by 77.

20. * Compute
$$\sum_{n=1}^{\infty} \frac{n^2}{3^n}$$
.

Figure 3