Problem Sheet \#1

I've got 99 problems
and now Jay- Z is one
Barack Obama
White House Correspondents' Dinner
April 27, 2013

Problems are roughly sorted in order of difficulty. Problems marked with asterisks are meant to be challenging.

1. What are the solutions to the equation $x^{2}-12 x+35=0$?
2. Find the area of the solution set to the equation $x^{2}+x+y^{2}-y+\frac{1}{4}=0$.
3. How many two-digit positive integers are divisible by 4 or 7 , but not both?
4. What is the solution to the equation $\ln x=\log _{\ln x} x$?
5. Equilateral triangle $A B C$ is inside square $A D E F$, such that B lies on side $D E$ and C lies on side $E F$, as shown in Figure 1. Find $[A B C] /[A D E F]$.
6. Find the last digit of 2^{2020}.
7. How many distinct triangles can be made using sides with distinct side lengths from the set $\{1,2,3, \ldots, 12\}$?
8. Find the area of $\triangle H X Y$, where $A B C D$ is a square, $A H=G C=C F=E A=1$, and $H D=D G=F B=B E=2$, as shown in Figure 2.

Figure 1

Figure 2
9. (2018 AMC 8) How many perfect cubes lie between $2^{8}+1$ and $2^{18}+1$, inclusive?
10. Let A, B, C, D, and E be digits such that the four-digit number $A B C 6$ is equal to 11 times the two-digit number $D E$. Find the five-digit number $A B C D E$.
11. 18 ! is equal to $6,402,373,705,7 \underline{a b}, 000$. Find the product $a \cdot b$.
12. Find the remainder when 2020^{19} is divided by 7 .
13. Each face of a cube is painted either red or blue. Find the number of ways to paint the cube, if two paintings that can be obtained through a rotation are considered identical.
14. Define the base-2 iterated logarithm of x to be

$$
\log _{2}^{*} x= \begin{cases}0 & \text { if } x \leq 1 \\ 1+\log _{2}^{*}\left(\log _{2} x\right) & \text { if } x>1\end{cases}
$$

Find the smallest integer n such that $\log _{2}^{*} n=5$.
15. Find all roots to $x^{4}-2 x^{3}-7 x^{2}+8 x+12$.
16. * (2014 AIME II) Let $f(x)=\left(x^{2}+3 x+2\right)^{\cos (\pi x)}$. Find the sum of all positive integers n for which

$$
\left|\sum_{k=1}^{n} \log _{10} f(k)\right|=1
$$

17. * $\triangle A B C$ has side lengths $A C=3, A B=4$, and $B C=5$, and has incenter D. Circles Γ_{1}, Γ_{2}, and Γ_{3} are drawn inside triangle $A B C$ such that all three circles pass through D, Γ_{1} is tangent to $A B$ and $A C, \Gamma_{2}$ is tangent to $A B$ and $B C$, and Γ_{3} is tangent to $A C$ and $B C$, as shown in Figure 3. Find the sum of the areas of circles Γ_{1}, Γ_{2} and Γ_{3}.
18. * The expression $\sqrt[3]{25+\sqrt{a}}+\sqrt[3]{25-\sqrt{a}}$ is exactly equal to 5 . What is the value of a ?
19. * Find the remainder when 2020^{2019} is divided by 77 .
20. * Compute $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$.

Figure 3

